- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Aude-Pradal, Marie (1)
-
Gnanadesikan, Anand (1)
-
Holder, Christopher (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Earth system models (ESMs) are useful tools forpredicting and understanding past and future aspects of the climate system.However, the biological and physical parameters used in ESMs can have widevariations in their estimates. Even small changes in these parameters canyield unexpected results without a clear explanation of how a particularoutcome was reached. The standard method for estimating ESM sensitivity isto compare spatiotemporal distributions of variables from different runs ofa single ESM. However, a potential pitfall of this method is that ESM outputcould match observational patterns because of compensating errors. Forexample, if a model predicts overly weak upwelling and low nutrientconcentrations, it might compensate for this by allowing phytoplankton tohave a high sensitivity to nutrients. Recently, we demonstrated that neuralnetwork ensembles (NNEs) are capable of extracting relationships betweenpredictor and target variables within ocean biogeochemical models. Beingable to view the relationships between variables, along with spatiotemporaldistributions, allows for a more mechanistically based examination of ESMoutputs. Here, we investigated whether we could apply NNEs to help usdetermine why different ESMs produce different spatiotemporal distributionsof phytoplankton biomass. We tested this using three cases. The first andsecond case used different runs of the same ESM, except that the physicalcirculations differed between them in the first case, while the biologicalequations differed between them in the second. Our results indicated thatthe NNEs were capable of extracting the relationships between variables fordifferent runs of a single ESM, allowing us to distinguish betweendifferences due to changes in circulation (which do not changerelationships) from changes in biogeochemical formulation (which do changerelationships). In the third case, we applied NNEs to two different ESMs.The results of the third case highlighted the capability of NNEs to contrastthe apparent relationships of different ESMs and some of the challenges itpresents. Although applied specifically to the ocean components of an ESM,our study demonstrates that Earth system modelers can use NNEs to separatethe contributions of different components of ESMs. Specifically, this allowsmodelers to compare the apparent relationships across different ESMs andobservational datasets.more » « less
An official website of the United States government
